

VIII Escuela Técnica Internacional Produss

4 días de conferencias y muy buenas experiencias. Del 14 al 18 de abril del 2013 - Hotel El Pueblo, Lima - Perú

Cómo enfrentar la crisis de costos altos de insumos alimenticios para continuar siendo competitivos.

VIII Escuela Técnica Internacional
Produss

Vitor Hugo Brandalize

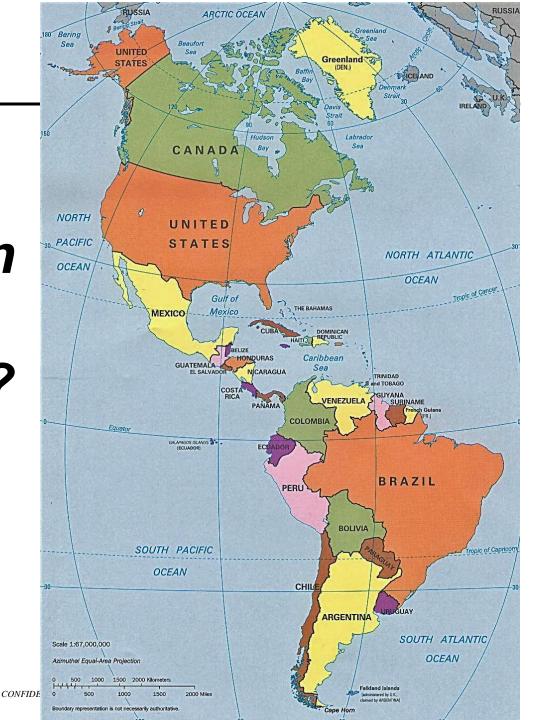
Cómo enfrentar la crisis de costos altos de insumos alimenticios para continuar siendo competitivos.

Cerca de 1.770.000 resultados (0,42 segundos)

Avicultura de la próxima década

El consumidor será cada vez más exigente.

Rentabilidad del negocio será menor.



AL – Tyson do Brazil – Internal use only

¿ Quiénes serán nuestros competidores?

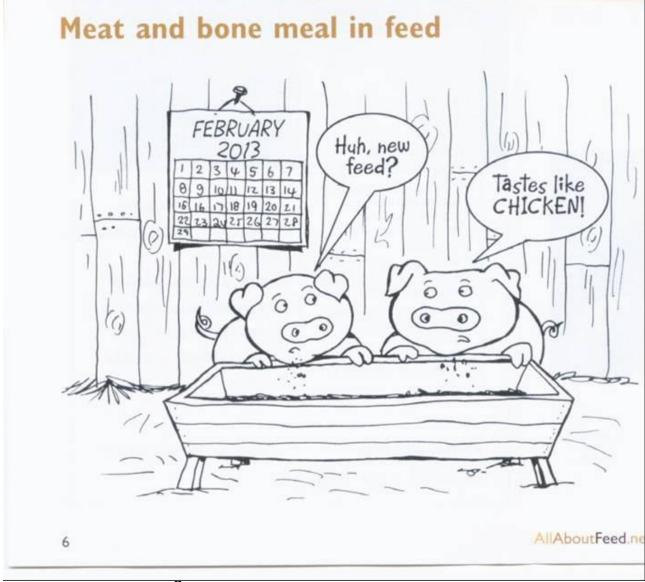
Aumento de la Producción de Carneson

(millones de toneladas)

		Tibe -	1	* "	Ta bear	Á.	
	Bovino	Porcino	Pollo	Ovino	Otros	Total	Población Humana
2010	66.2	102.2	96.9	14.4	5.6	285.4	6,908
2020	75.4	115.1	124.1	17.1	6.1	337.9	7,674
Incr (%)	13.9	12.6	28.1	18.7	8.9	18.4	11.1

Nuestra situación en 2011 en los 15 Países de Mayor Relevancia

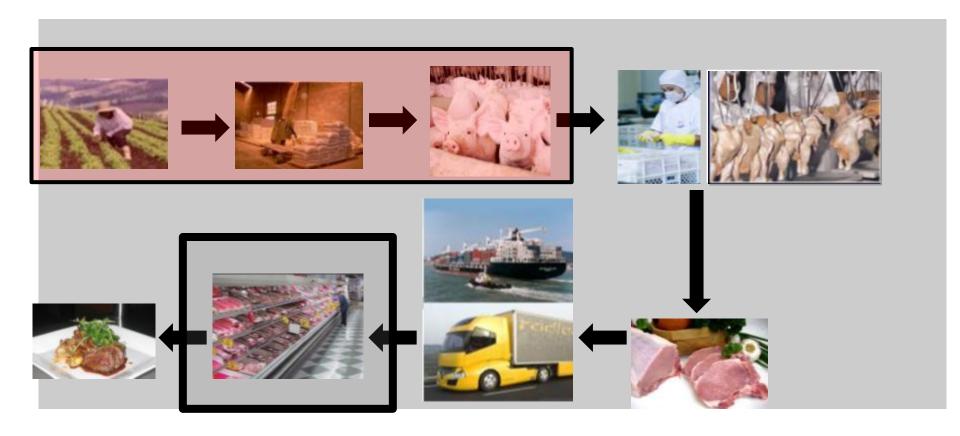
Países	Producción	Consumo	Exportación	Importación
Argentina	9	15	7	
Brasil	3	4	1	
Canadá	14	14	8	12
Chile			10	
Cuba				13
México	7	5		5
EE.UU.	1	2	2	
Venezuela				10
% Participación	37.2	30.0	68.6	12.4


Adaptado de MAPA, OECD-FAO, USDA y presentado por Aveworld, junio de 2012

Principales Desafíos del Porvenir Lección de Casa

Bienestar Animal

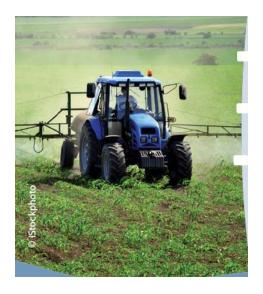
Gallinas Ponedoras EE.UU. hoy - 550 cm²/gallina Brasil hoy - 300 a 400 cm²/gallina 2012 - "jaulas perfeccionadas" (750 cm²/gallina)

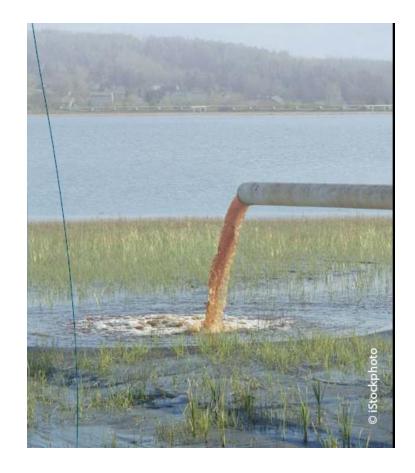

Pollos de Engorde

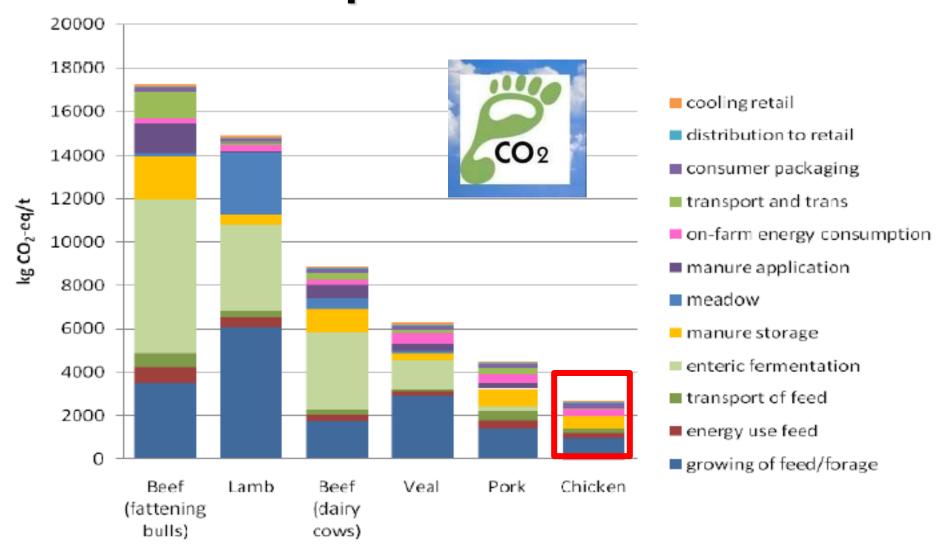
Densidad Poblacional Animal

(máximo 33 kg/m²)

Seguridad Alimentaria

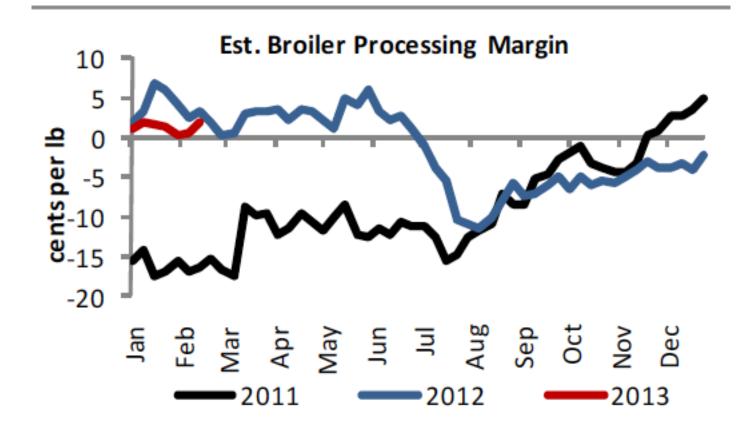

"ALIMENTOS DE ORIGEN ANIMAL pueden ser un vehículo en potencial para la contaminación de la cadena alimentaria humana"


Impacto Ambiental



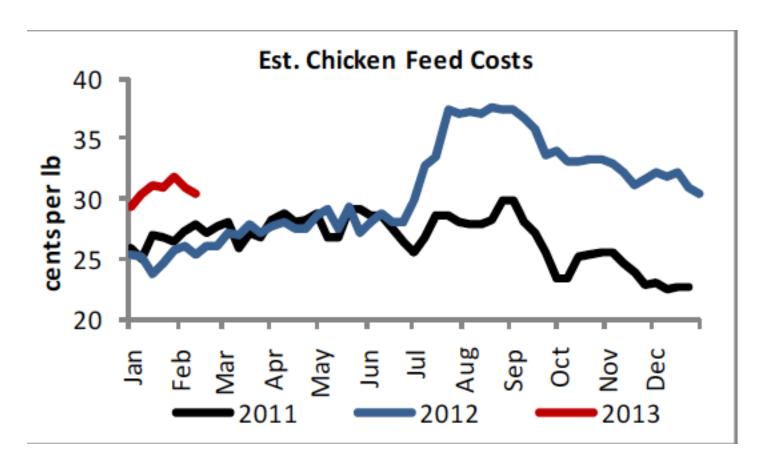
Producción de CO₂ por las diferentes especies

Adaptado de Blonk and Luske, 2008



CONFIDENTIAL - Tyson do Brazil - Internal use only

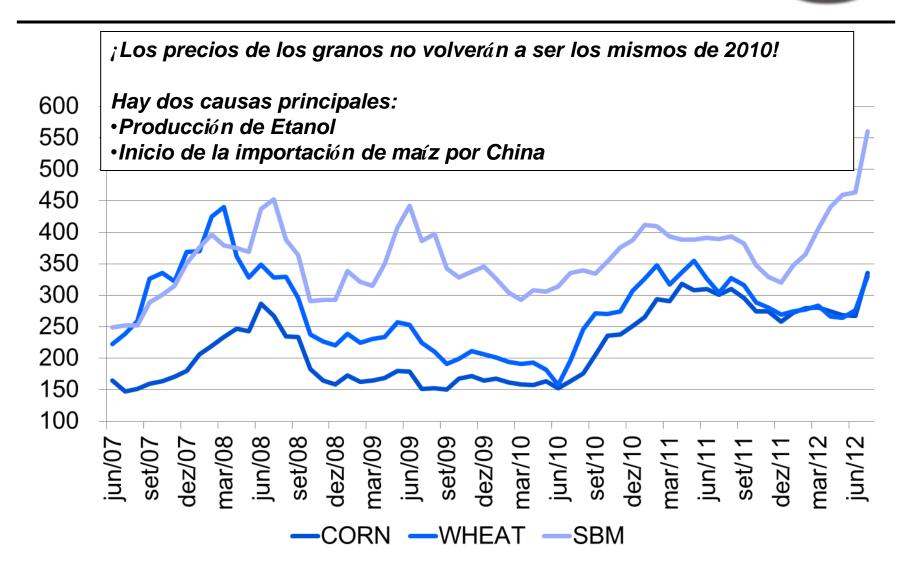
SITUACIÓN EN LOS EE.UU. (SIMILAR A BRASIL) (Tysor



FUENTES: USDA

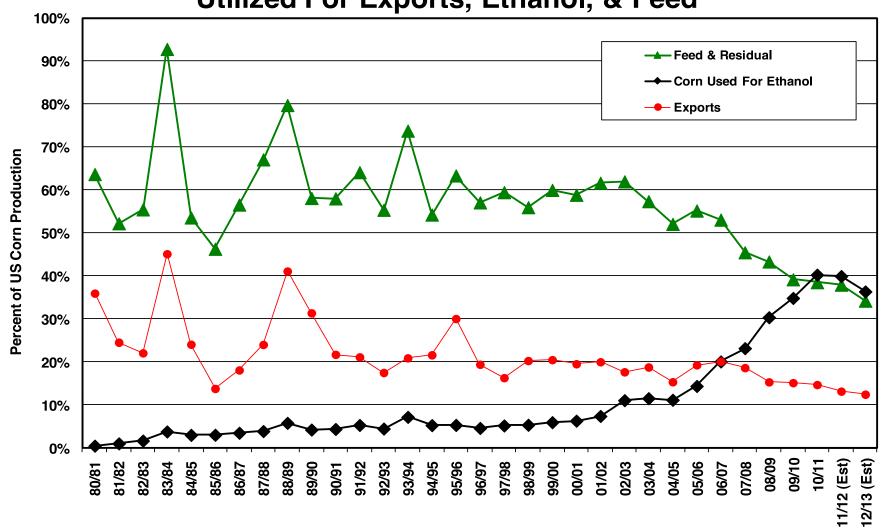
.. PRINCIPALMENTE DEBIDO A:

FUENTE: USDA

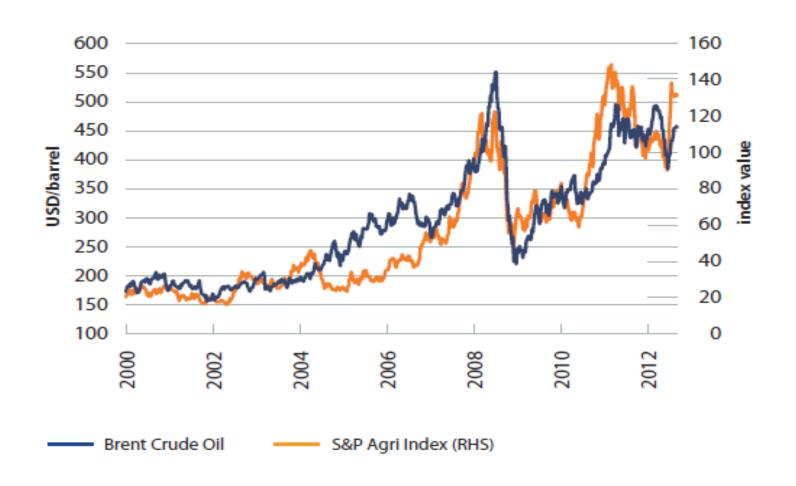

Precios del Pollo de Engorde, Maíz y Harina de Soya (en Dólares) (Febrero de 2012 y Febrero de 2013)

Ave Viva		Ma	aíz	Harina de Soya		
	2012	2013	2012	2013	2012	2013
	810	1500	249	283	353	469

Penz, 2013


Precios de Materiales en Dólares/Tonelada es difícil persuadir el comercio al por menor a elevar precios

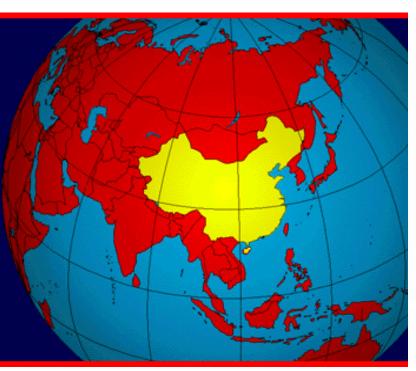
FUENTE: CBOT. INDEXMUNDI

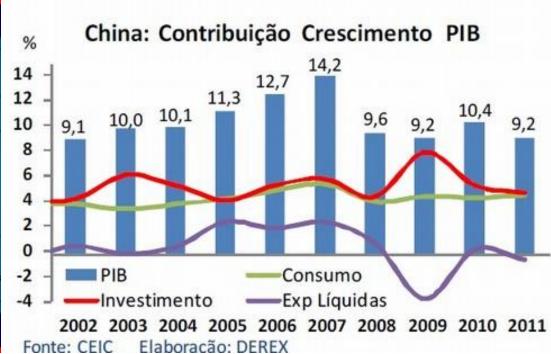

Percent of U.S. Corn Production Utilized For Exports, Ethanol, & Feed

Correlación entre precio de petróleo y precios de commodities agrícolas

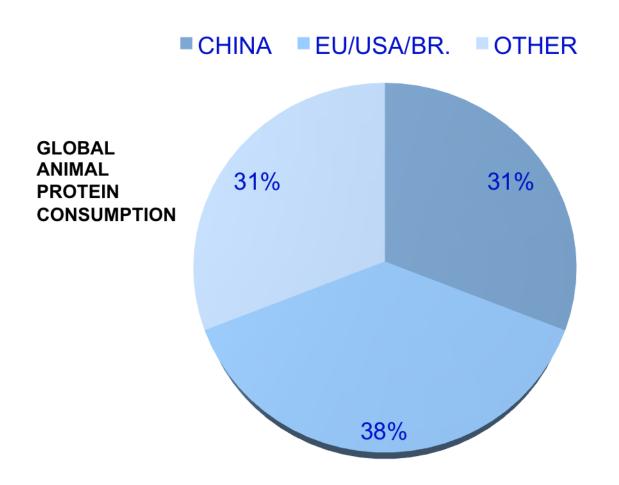
Adaptado de Bloomberg and Rabobank, 2012

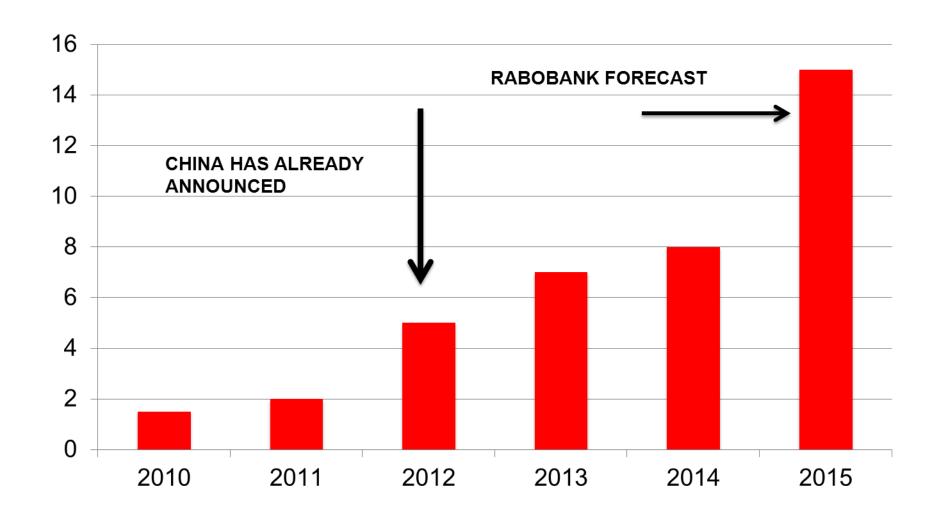
Precio del Álcohol de Maíz



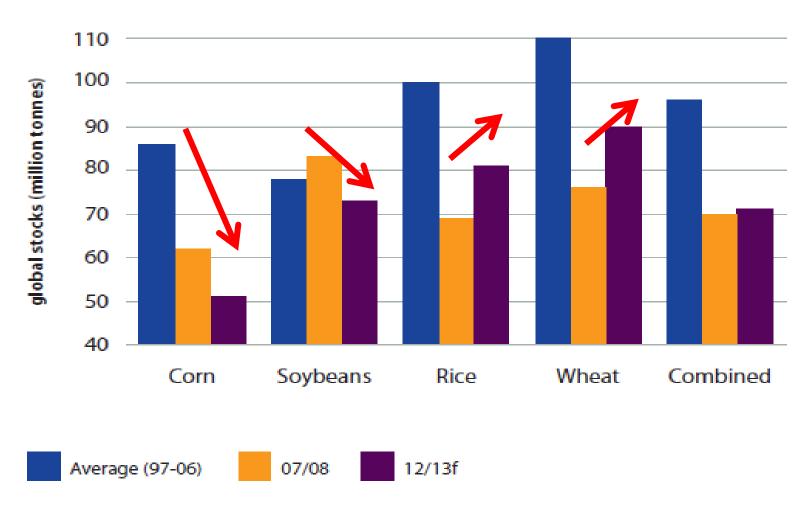


Petróleo	Maíz		
\$ 75	\$ 5.09 (\$204)		
\$ 90	\$ 6.12 (\$245)		
\$ 105	\$ 7.15 (\$286)		


CONFIDENTIAL – 1 yson ao brazu – miernai use oniy



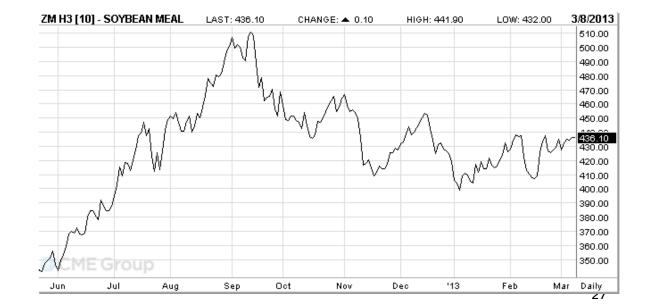
Demanda por Alimento Animal – Efecto CHINA



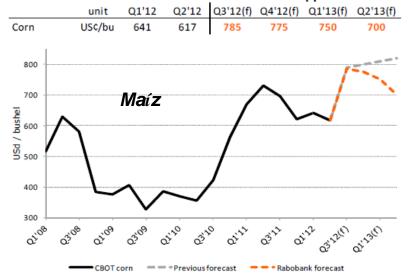
Importación de Maíz por CHINA en Millones de Toneladas

Inventarios de soya, maíz, arroz y trigo resolutivos

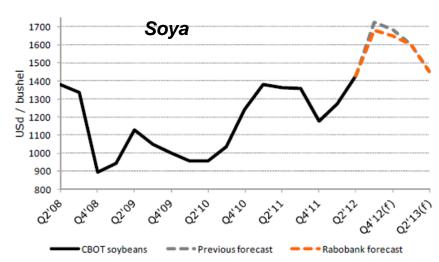
Adaptado de USDA y Rabobank, 2012


zil - Internal use only

Precios de Soya y Maíz en Europa (Marzo de 2013)



Expectativa de precios para Maíz y Soya en los próximos semestres



Price forecast reduced on increased supplies

CBOT Soybean prices forecast higher than current levels

	unit	Q1'12	Q2'12	Q3'12(f)	Q4'12(f)	Q1'13(f)	Q2'13(f)
Soybeans	US¢/bu	1272	1426	1680	1650	1600	1450

Adaptado de Bloomberg y Rabobank, 2012

1 de octubre de 2012

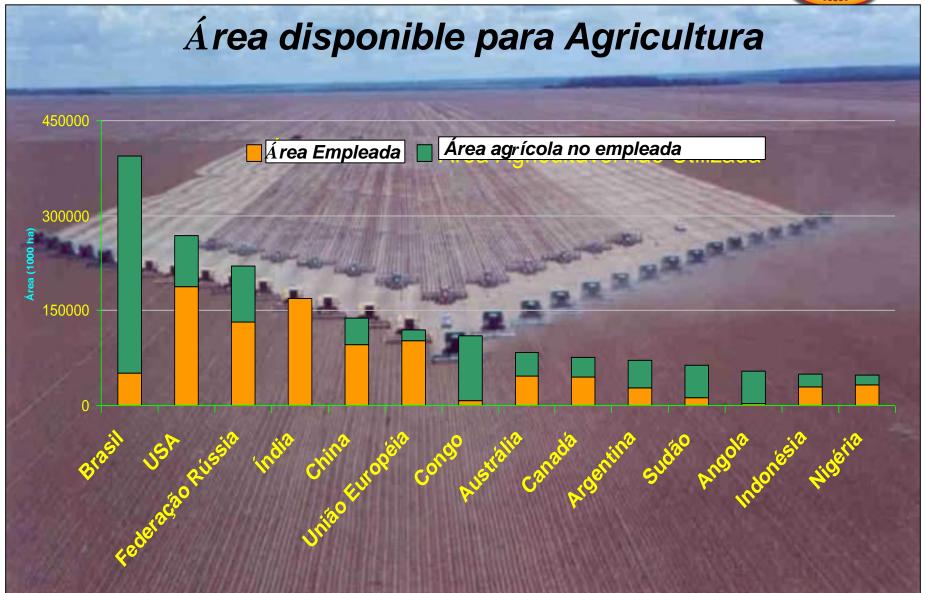
1 October 2012 – The entire animal production sector in the US is in a period of adjustment, which will effect food prices and feed volumes moving forward, according to Joel Newman, President and CEO of American Feed Industry Association (AFIA).

"USD 8 per bushel corn and over USD 17 per bushel soybeans are directly effecting all livestock production in the United States and will also be reflected in future feed consumption," Newman told Feedinfo News Services

He predicts that the poulty industry, which has the easiest ability to adjust due to its shorter cycle, will reduce production in 2013 by an additional two to three percent, from a three to four percent reduction in 2012.

8 dó lares/bushel de maíz y 17 dó lares/bushel de soya

Producción tendrá que reducirse en 2013 más 2 al 3%, además de los 3 al 4% de 2012


Producción total de Granos en Brasil

Año	Producción (millones/ton)
90/91	57.6
01/02	97.1
02/03	123.6
03/04	119.1
04/05	113.5
05/06	124.9
06/07	133.0
07/08	144.1
08/09	134.3
09/10	149.0
10/11	161.2
11/12	165.9
12/13	172.0

Adapado de CONAB, 2012 – 09/10 (3.14 ton/ha)

Área	Área (millones/ha)	% del total
Floresta amazónica	350	41.1
Con pasto	174	20.6
Con pastos en transición	45	5.3
Reservas legales	55	6.5
Producción anual de granos	53	6.1
Culturas permanentes	16	1.9
Ciudades, lagos, rutas, etc.	20	2.4
Florestas cultivadas	6	0.7
Otros usos (reservas de indígenas, etc.)	48	5.6
Área disponible	87	10.2

Adaptado de CONAB – Abril 2012)

Agricultura emplea solamente el 8.5%

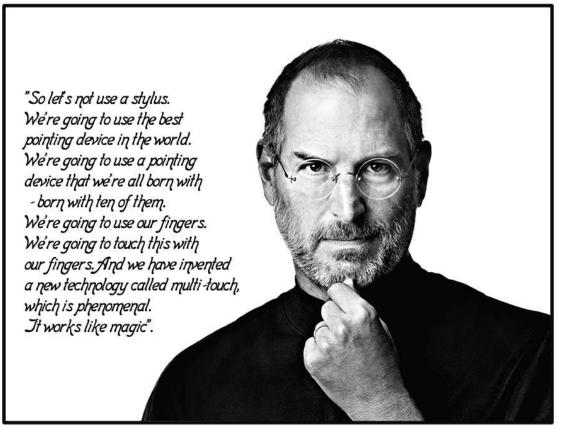
Watt Poultry e-News (25 de julio de 2012)

US corn buyers looking to Brazil as US prices rise

U.S. corn buyers are looking to Brazil for supplies as domestic prices continue to rise and supplies remain low due to the ongoing drought, according to reports by the Financial Times. The livestock, poultry and ethanol industries have been particularly challenged, as 88 percent of the U.S. corn crop sits in drought-hit regions.

¿Podríamos imaginar una situación como esta en el pasado?

Rabobank Industry Note #293 - December 2011


This Is Not Your Grandfather's Chicken Industry

Thoughts from a Banker's Perspective¹

Este estudio demuestra que la industria de pollo sobrevivirá al cambiar paradigmas

¿Cómo vamos a enfrentar los retos futuros?

Steve Jobs 1955-2011

Edad y peso ideal de sacrificio

Costo de produccíon pollo vivo / edad

(costo de alimento, costo de mano de obra, costo de pollito, otros costos y desempeños técnicos/edad de sacrificio).

- Rendimiento de carne / peso de sacrificio.
- Meta / precios de venta: Cortes / caparazón / ave viva.
- Costo del sacrificio o cortes / ave / kg.

Objetivo:

Maximizar las ganancias dependiendo de la mejor relación costos x ingresos para el mercado meta.

Composición de los Costos de Producción de Pollos de Engorde (Base %)

	(%)
Diet	65,5
DOC	16,0
Grower	11,0
Diet Freight	1,7
Broiler Freight	1,7
Feed Mill Operation	1,5
Broiler Loading	1,3
Technical Service	1,0
Vaccines and Treatments	0,3
Total	100

Penz, 2013

¿Cómo reducir los costos?

Producción Viva

Conversión Alimenticia

Planta de Procesamiento

Rendimiento

Eficiencia

Trabajo

Gastos

Costos de Mano de Obra (US\$ / Mes)

Costo de Mano de Obra (America del Sur)								
Argentina	2.500,00							
Brasil	695,00							
Ecuador	520,00							
Perú	500,00							
Chile	480,00							
Colombia	480,00							
Bolivia	450,00							

EE.UU. 2.100,00

Tendencia Genética (Cobb)

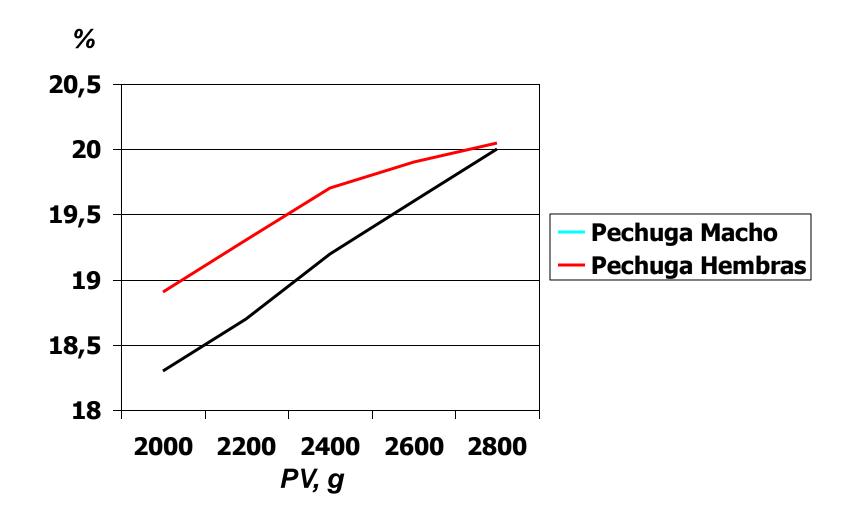
	Ganancia / año
Peso Corporal	50 gramos
CA	- 0,02
Rendimiento de Canal	0,1%
Carne de Pechuga	0,3%
Huevos / Ave	1

Bourne, 2007

Potencial Genético y Ganancias

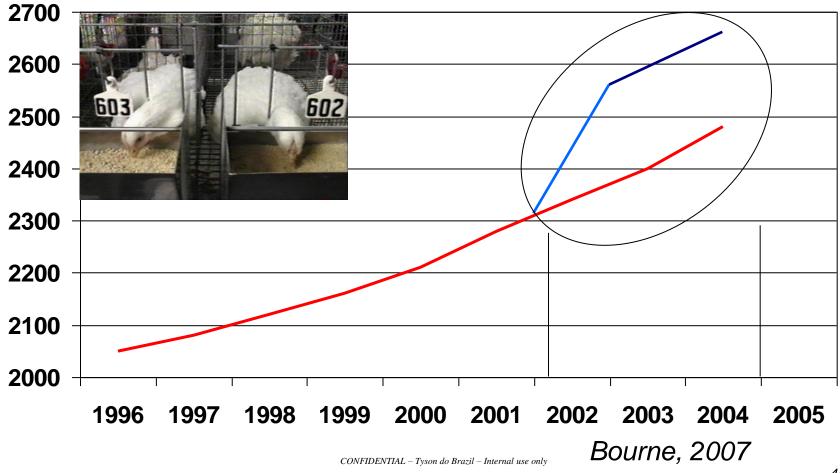
Valor Económico de 10 Años de Selección Genética (52.000.000 pollos de 2,5 kg)

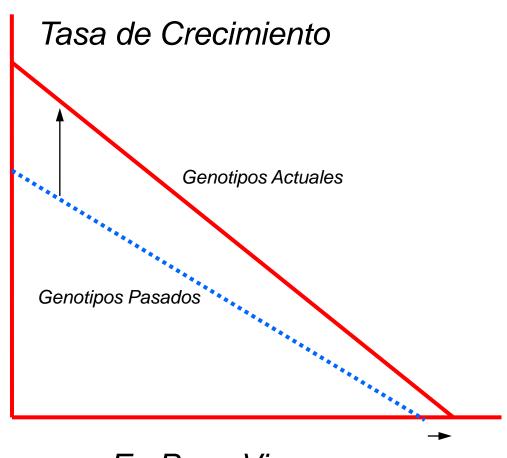
Característica	Mejora	Unidad US\$	Valor US\$
Ganancia Peso	500 g	1,25 / kg	32.500.000
Rendimiento Pechuga	3 %	3,00 / kg	11.700.000
Conversión Alimenticia	200 g/kg	360 / ton	9.360.000


Potencial Genético y Ganancias

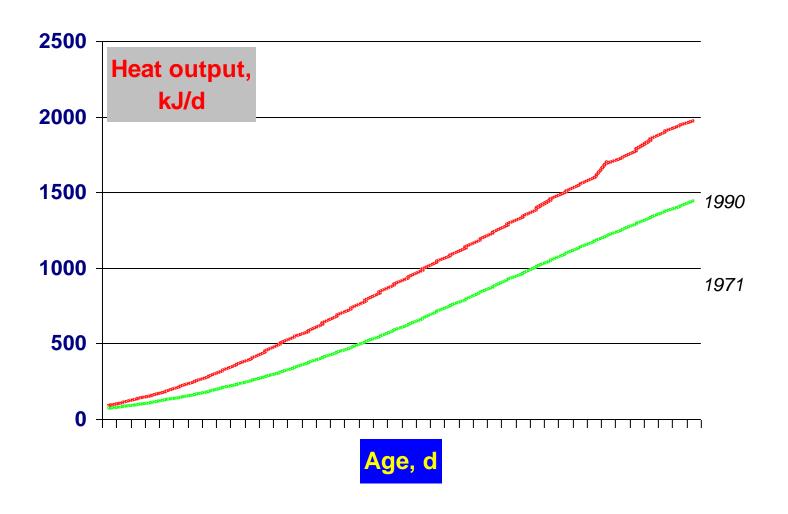
Valor Económico de 10 Años de Selección Genética (52.000.000 pollos de 2,5 kg)

Característica	Mejora	Unidad US\$	Valor US\$
Ganancia Peso	500 g	1,25 / kg	32.500.000
Rendimiento Pechuga	3 %	3,00 / kg	11.700.000
Conversión Alimenticia	200 g/kg	360 / ton	9.360.000


Rendimiento de Pechuga con diferente peso (Cobb 500).



Presión de Selección en el Peso Corporal (Cobb)



En Peso Vivo

Comparación de la producción de calor en pollos de 1971 y 1990

Rendimiento de Caparazón

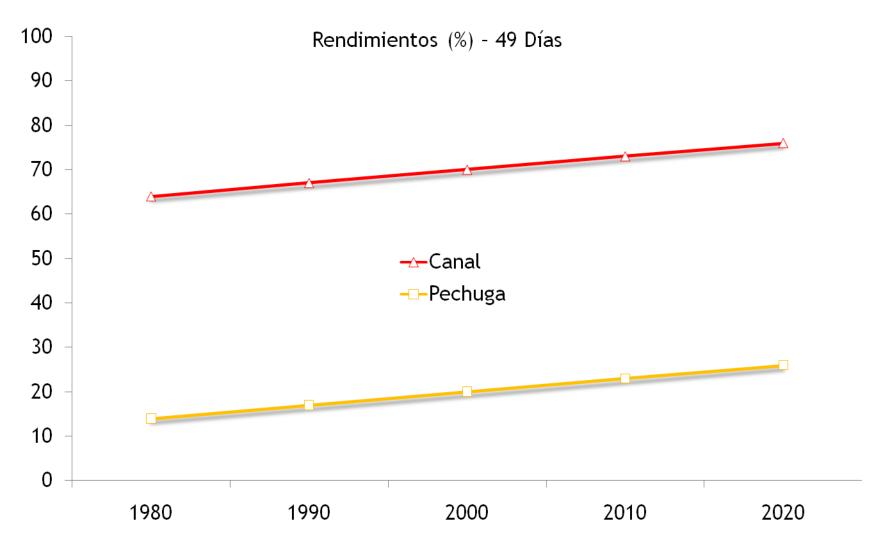
Cobb 700
Ross 708
Hubbard HY

Ejemplos

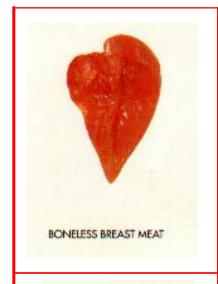
- Ventas de Pollo "Caparazón Entero"
 Con 1,8 Kg = Costo del pollito y la conversión alimenticia son los principales factores;
- Con vistas al procesamiento en la planta de procesamiento

La línea con mayor rendimiento en cortes y mayor porcentual de carne blanca;

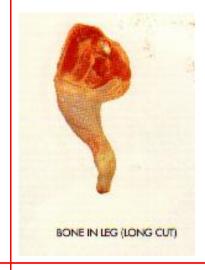
Cuando este era el Producto....



LA VIDA ERA FÁCIL


Potencial Genético

...¿Cómo es uno pollo?



Pechuga + pechuga deshuesada (20,35%)

US\$ 2.750 (6 x 2) -4.950 (Fresh MI) Por MT

Ala = 9,4%

US\$ 2.700 Por MT

Productos como huesos, plumas, intestinos, etc..

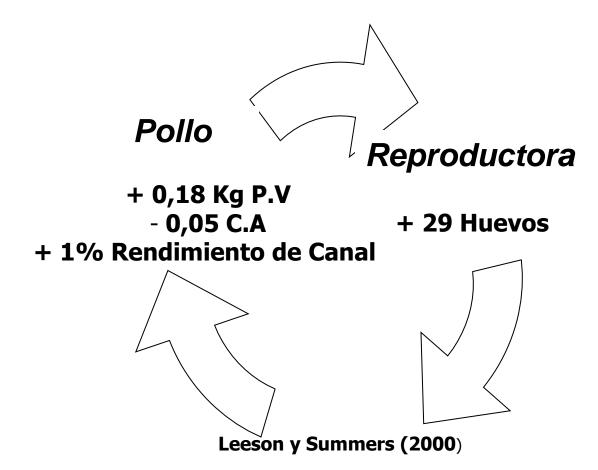
Musio con hueso (24,27%) Muslo sin hueso (17,55%) US\$ 1.680 (Muslo completo ME) -4.100 (BL MI) Por MT

77777 Otras veces, pagamos para remover

50 al 60%

CONFIDENTIAL - Tyson do Brazil - Internal use only

¡Seleccione la Línea Genética (Cobb, 2013)!



	Promedio	Promedio
	Cobb500SF	Línea X
Peso vivo aves anilladas	3051	3075
Peso vivo Plataforma	2866	2932
Peso s/ pluma s/ sangre	74,2	72,5
Ala	8,12	8,35
Pechuga deshuesada	18,72	17,32
Pech. desh. en cortes		
menores (Sassami)	4,24	3,96
Carne de pechuga total		
(sin piel)	22,96	21,28
Dorso	11,37	10,59
Espalda	4,61	4,67
Sobremuslo	12,71	13,08
Muslo	9,68	9,96
Piel de la Pechuga	2,74	2,52
Grasa	2,03	2,07
Conversión Alimenticia		
(49 días)	1,618	1,660

Promodio

Dromodio

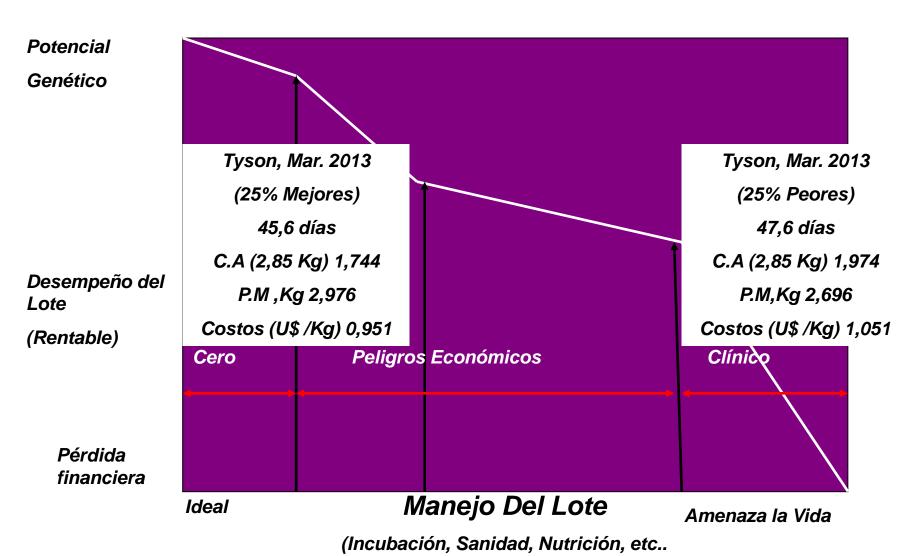
Rendimiento de Canal y Desempeño Técnico

Tyson de Brasil Costo de Producción Viva – Agristats Diciembre/12

LIN % = 1 100 2 99 41 143 15	FLAGS	PII. SP NIM.	(a) LIV FRCILL	(a.1)	(d)						1100211	MADILL, (ROUP 65,	ONIRY 25								Per	iod: Minth 12/12
1 100 2 99 4 98 99 41	FLAGS		RIU	T	(-)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(i)	(k) WB & FLD	(1)	(m)	(m.1)	(n)	(0)	(p)	IM I ED) (a)	(r)	(r.1)
1 100 2 99 4 98 99 41	FLAGS			IION	CHICK	GEOWER.	HEED INGR	MILL DELIV	VAC & MED	CATCH HAUL	TECH SERVE	MISC	DEPT OVERHD	EARIS CONDOM	101A 002T	BIRD	BIRD WEIGHT	BIRD	% LIVA-	CALORIE	OWN VAR		Æ
4 98 99 41			VAR	ç/KG	COST	COST	0031	COST	COST	COST	COST	COST	COST	ATUAL	ACTUAL	WEIGHT	RAVE	Æ	BILITY	COMER	\$/INE	BIRDS	KILOTANS
99 41		II SJ	-28.39 -24.48	204.73 208.64	23.60	15.19 17.50	146.37 146.46	10.23 9.61	1.99 0.01	4.98 7.57	1.57 1.25	0.00	0.53	0.59 1.19	0.47 0.49	2.91 2.71	2.7-3.09 2.4 - 2.7	47.42 43.59	97.53 95.81	5,844 5,832	-148.82 -142.68	2,533,155 1,356,970	7,375,840 3,681,140
		CΜ	-24.19	208.93	22.68	18.34 17.90	144.80 167.03	10.35 6.56	0.50	6.32	3.10 1.07	0.00	0.17	1.26	1.40	2.87	2.7-3.09	46.65 34.00	94.26 95.06	5,685	-111.61	2,267,093	6,515,760
147 13	G		1.37 10.43 11.55	234.49 243.55 244.67	29.54 35.25 32.19		165.10 175.09	2.92 6.91	4.09 0.18	2.98	0.95 1.07	0.00	0.71	0.00 0.32 0.00	0.33 0.10 0.44	X	X X X	38.30 37.10	95.50 93.69	5,281 5,767 5,605	85.60 23.64 86.74	X X	X
149 11 150 11			13.82 14.41	246.94 247.53	38.84 24.39	32.33	159.26 175.13	6.39 6.01	0.11	5.39 4.43	2.58	0.00	0.40	0.77	0.86	X	X X	32.50 53.10	95.95 89.58	5,014 5,879	122.91 -3.66	X X	X
152 10			16.18	249.30	26.06	16.76	185.36	7.35	0.81	10.99	1.07	0.00	0.73	0.00	0.19	X	X	43.40	92.57	6,000	88.58	X	X
153 9 156 7			16.43 23.84	249.55 256.96	35.26 37.34	30.73	169.97 171.76	7.20 4.23	0.46 4.12	5.42 5.64	1.57 0.77	0.02	0.34	0.76 0.48	0.72 1.87	X	X X	35.95 36.86	95.63 91.34	6,273 5,587	90.92 67.91	X X	X X
157 7 158 6			25.05 25.70	258.17 258.82	29.58 40.37	11.48 36.61	203.13 165.57	7.43 5.61	4.24 3.04	0.01 4.43	1.05 2.71	0.00	0.25	0.00	1.00 0.42	X	X X	48.40 40.70	87.41 93.62	6,488 5,522	92.16 14.47	X X	X
160 5			33.34	266.46	23,88	19.05	190.50	9.29	9.79	13.05	-	0.00	0.83	0.00	0.06	X	X	57.95	89.71	6,417	41.86	X	X
161 4 162 4			35.07 38.01	268.19 271.13	22.45 19.00		191.82 186.89	8.27 15.43	8.45 7.37	13.05	-	0.00	1.45	0.00	0.06	X	X X	59.89 57.21	90.02 95.27	6,577 6,261	45.26 43.53	X X	X X
163 3			38.33	271.45	21.80		199.07	5.88	6.73	13.05	2.50	0.00	0.65	0.00	0.06	X	X	61.99	87.16 05.10	6,841	15.80	X	X
164 2 165 2			39,23 40,36	272.35 273.48	39.49 28.44		173.75 191.64	9.82 4.69	2.68 3.57	4.34 12.60	2.58 0.98	0.10	0.33 2.04	2.61 0.40	0.35 0.33	X	X X	40.17 50.10	95.10 91.43	5,272 6,256	132.20 7.55	X X	X
166 1 167 1			52.17 84.27	285.29 317.39	34.65 53.90	39.42 44.07	179.31 182.04	18.91 14.31	0.19 0.41	8.26 9.33	3.39 3.20	0.00 0.15	0.12 5.47	0.61 3.36	0.43 1.16	X	X X	42.00 39.00	97.19 94.81	5,609 5,781	108.44 74.91	X	X
168	167	= == Aug Co		233.12	26.71		161.65	7.08	0.52	6.92	1.00	0.06	0.36	1.12	0.48	2.80		47.65	95.88	5,806	_	722,144,422	1,946,520,106
169 170	167 42	Wit Aug Co Top 25		232.70 218.48	25.41 26.71	27.21 27.20	163.27 147.95	6.81 6.67	0.44 0.16	6.69 6.96	0.92 0.94	0.04	0.34	1.07 1.05	0.49 0.40	2.70 2.58	-	46.52 44.42	95.89 96.53	5,865 5,561	1.39 -38.62	722,144,422 186,520,735	1,946,520,106 462,415,769
171 172	84 5	Tap 50	% −10.05 5 −24.47	223.07 208.65	28.05	27.11	151.43 140.39	6.71 8.18	0.13 0.50	6.86 6.75	0.93 1.60	0.09 0.01	0.32 0.51	1.04 0.97	0.40 0.77	2.51 2.41	-	43.87	96.55 96.22	5,573	-19.77 -103.04	390,795,880 27,200,663	943,841,916 54,932,589
173 174		== == WICOAv ICOOthe	======================================	207.11 232.93			145.81 163.43		1.02 0.44	6.02 6.70	2.07 0.91	0.00	0.49	0.97 1.07	0.82 0.49	2.85 2.69	<u> </u>			5,783 5,866		6,157,218 715,987,204	17,572,740 1,928,947,366
== == 175 176	18 5	= =	==== =) - -18.55	261.98 243.44	31.80		179.58 168.32	8.18 5.76	3.28	8.22 6.96	1.72	0.01	0.87 0.42	0,52 0,22	0.49 0.43	2.44 2.18			92.83	5,913 5,509	-0.22	73,144,564 15,142,255	170,937,031 35,761,879

Feb 5, 2013 - 16:55 ADJUSTED LIVE PRODUCTION COST (ç/KG) TYSON BRASIL, GROUP 65, ONDRY 25												Page: (Period: Mon										
					(a)	(a.1) ADJUSTE	(a.2) D LIVE COS	(a.3) I (ç/KG)	(a.4)	(b) DIFFER FE			(c.1) LIVE COS				(d.2) JWI, OWN,	(e)	(f)	(f.1)	(g)	(h)
LIN	olo	FLAGS		PLT. NUM.	VAR	ADJ XAN WI & OWN	WI ADJ	XANIH WWO &	ACTUAL	VS AVG (XMPANY ————— ACTUAL	RK	FOR WI & 	XANIH CENTS/KG	RK	VAR	CENTS/KG	BIRD AÆ	BIRD WEIGHT	BIRD WI RANGE	INFED OWNING COST	XANTH / KG MEAT
26 59 74	85 65		_	=	-8.71 -4.17	221.89 226.42	-2.05 1.35	14.65 -18.84	234.49 208.93	-3.22 -2.26	4.58 -21.93	132 2	5.89 -23.06	236.54 207.58	9 67	-12.82 -3.30	210.58 220.10	34.00 46.65	X 2.87		85.60 -111.61	X 0.00
91	56 46	L		IT	-2.99 -1.21	227.60 229.38	-2.86 1.16	22.20 -25.80	246.94 204.73	-5.64 -1.45	19.46 -26.93	152 1	17.56 -27.06	248.20 203.58	82 110	-2.00 1.00	221.40 224.41	32.50 47.42		X 2.7-3.09	122.91 -148.82	X 0.00
112 126 139	34 25	L		SJ	0.94 3.17	231.53 233.76	-4.73 0.05	22.75 -25.17	249.55 208.64	22.38 1.62	-5.95 -26.10	153 3	20.05 -22.05	250.69 208.59	124 125	2.72 2.80	226.12 226.20	35.95 43.59	X 2.71		90.92 -142.68	X 0.00
141 146	17 16 13				5.83 6.10 8.63	236.43 236.69 239.22	-7.52 -3.61 -4.46	15.77 16.22 23.41	244.67 249.30 258.17	4.53 5.46 18.92	7.03 10.71 6.14	154 155 157	21.55 22.26 27.07	252.19 252.90 257.71	118 120 155	2.04 2.30 15.82	225.44 225.70 239.22	37.10 43.40 48.40	X X X	X X X	86.74 88.58 92.16	X X X
147 155	13				9.09 15.04	239.68 245.63	-0.58 -1.16	12.49	243.55 256.96	8.64 8.14	1.79 15.70	150 158	13.49 27.48	244.13 258.12	154 158 160	13.20 16.59	236.60 239.99	38.30 36.86	X	X	23.64 67.91	X
157 158 159	6				16.61 22.02 22.08	247.20 252.62 252.67	-1.48 4.10 7.93	1.81 11.47 10.53	247.53 268.19 271.13	0.82 11.65 -0.22	13.59 23.41 38.23	151 162 159	15.88 30.52 29.47	246.52 261.16 260.11	156 157	19.37 16.06 16.11	242.77 239.46 239.51	53.10 59.89 57.21	X X X	X X X	-3.66 45.26 43.53	X X X
160 161 162	5 4 4				22.35 22.62 23.55	252.94 253.22 254.15	-3.13 2.19 2.10	22.54 11.05 2.57	272.35 266.46 258.82	-1.70 10.79 1.64	40.93 22.55 24.07	165 161 156	44.83 30.45 26.07	275.48 261.10 256.72	163	24.84 16.66 25.88	248.24 240.06 249.28	40.17 57.95 40.70	X X X	X X X	132.20 41.86 14.47	X X X
163 165 166 167	3 2 1 1				27.42 37.88 40.83 72.57	258.02 268.48 271.42 303.16	6.45 -2.34 -2.48 0.04	6.98 19.15 4.54 14.19	271.45 285.29 273.48 317.39	15.16 0.52 12.83 12.19	23.17 51.66 27.53 72.09	160 166 164 167	30.22 56.99 42.29 86.71	260.87 287.63 272.93 317.36	161 166 165 167	21.45 36.39 34.40 69.27	244.85 259.79 257.80 292.67	61.99 42.00 50.10 39.00	X X X	X X X	15.80 108.44 7.55 74.91	X X X
168 169 170 171 172	_	167 167 42 84 5	Wt A To To	p 50%	-1.19 -10.10 -6.99 -17.02	230.59 229.40 220.49 223.60 213.57	2.22 2.74 3.60 2.69 -0.05	0.31 0.56 1.51 0.67 4.83	233.12 232.70 225.60 226.96 218.35	0.00 -0.08 -3.89 -2.58 -6.81	0.00 -0.34 -3.63 -3.58 -7.96	84 81 45 58 28	-0.94 -8.67 -6.42 -12.24	230.64 229.70 221.97 224.23 218.40	84 78 23 43 3	-1.02 -9.73 -6.69 -17.20	223.40 222.38 213.67 216.71 206.20	47.65 46.52 49.10 48.09 44.31	2.80 2.70 3.00 2.89 2.54	- - - -	1.39 8.75 3.72 28.80	0.26 0.26 0.03 0.05 0.00
173 174	_				-1.39 -1.19	229.20 229.40	1.00 2.75	-23.09 0.77	207.11 232.93	-1.11 -0.07	-24.90 -0.11		-24.53 -0.73	206.11 229.92		-0.22 -1.03	223.18 222.37		2.85 2.69		-133.74 2.62	0.00
175 176	_	18 5		IAT80 T25%	-18.90	261.24 242.34	-0.75 -4.15	1.50 6.81	261.98 244.99	0.00	-14.87	10 5	-13.03	261.13 248.11	10	-19.38	252.74 233.36		2.44 2.15	-	31.68	1.61
177 178	_	146 37		==== = USA00 T25%	-8.22	227.39 219.17	2.61 3.64	0.08 2.04	230.09 224.86	0.00 -3.10	-2.13	74 37	-6.20	227.38 221.18	74 20	-7.87	220.34 212.48		2.84 3.02		 11.87	0.10

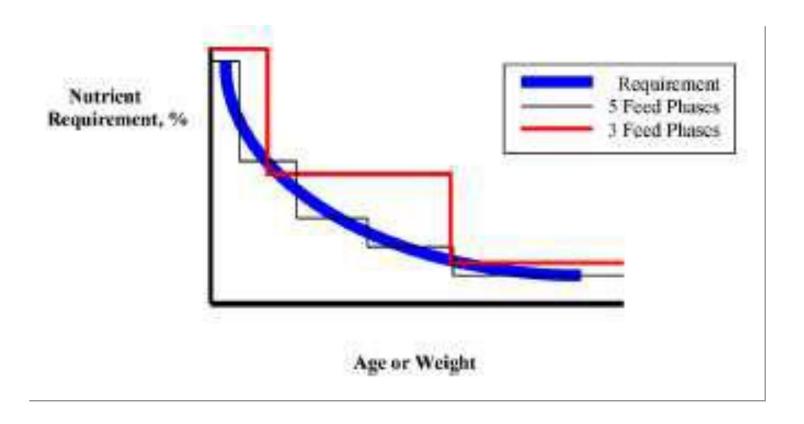
Evaluación de Resultados



¿Evaluar Desempeño o Costo?

Edad	Peso	CA	Viabilidad	IEE	Costo
44	2.520	1,85	96,0%	297	Ref.
43	2.520	1,85	98,2%	311	-1%
44	2.580	1,85	96,0%	304	-16%
44	2.580	1,81	96,0%	311	-18%

Manejo (Jones, 2007)



CONFIDENTIAL - Tyson do Brazil - Internal use only

Programa de Alimentación

Potencial Genético - Metabolismo

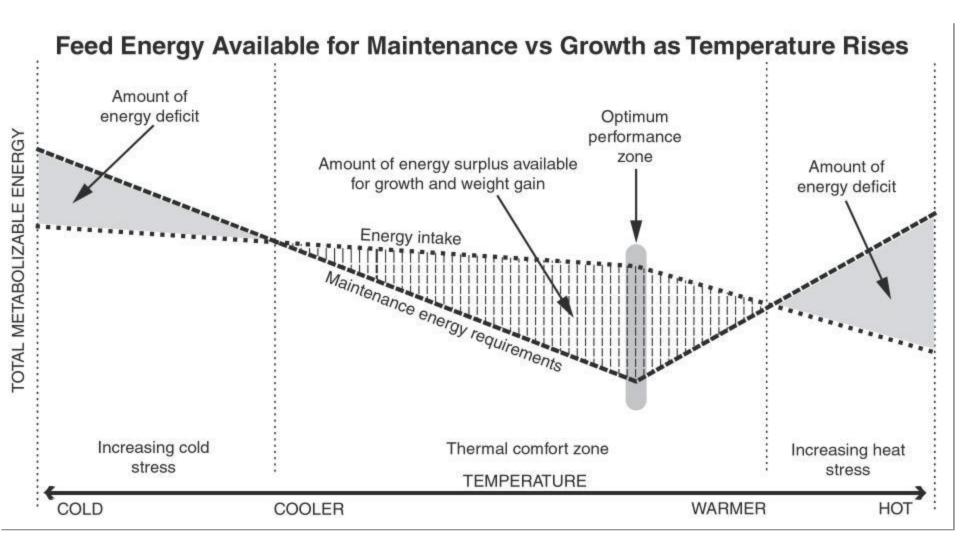
Definición de Mantenimiento

Ø Una definición práctica de mantenimiento es la cantidad de energía y nutrientes necesarios para mantener a un animal sin ninguna ganancia o pérdida neta de los tejidos del cuerpo

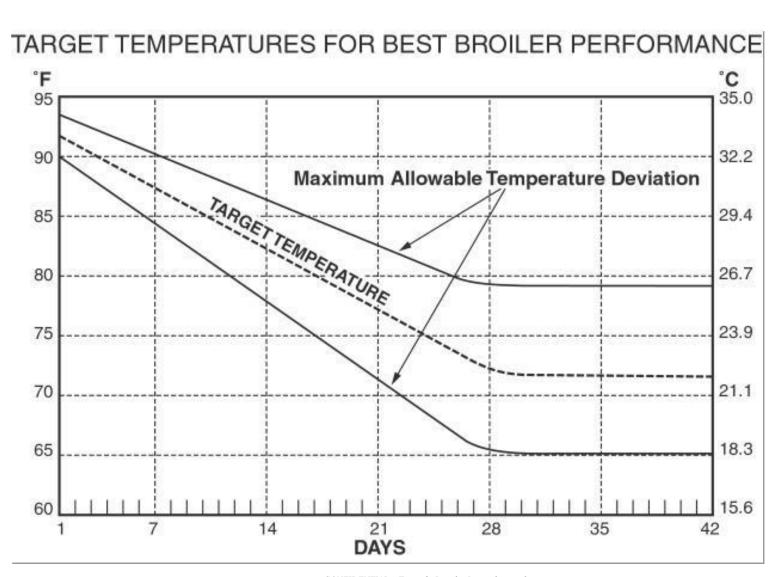
Componentes del Mantenimiento (Consumo de Energía)

- ^Ø Tasa de Metabolismo Basal en Descanso
- Actividad para Lograr el Sustento
- ^Ø Eficiencia Oxidación de los Nutrientes
- Ø Estrés Retos y Mantenimiento de la Homeostasis Temperatura Ambiente, Respuesta Inmune...

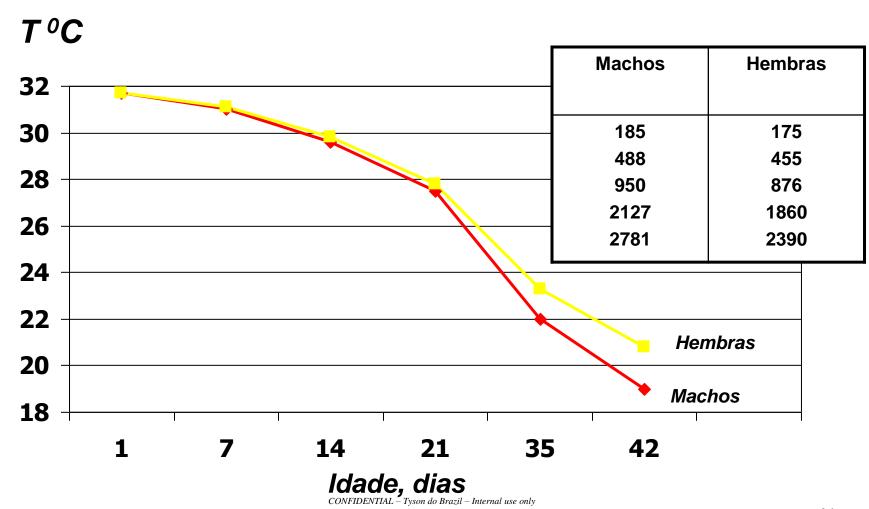
Potencial Genético - Metabolismo

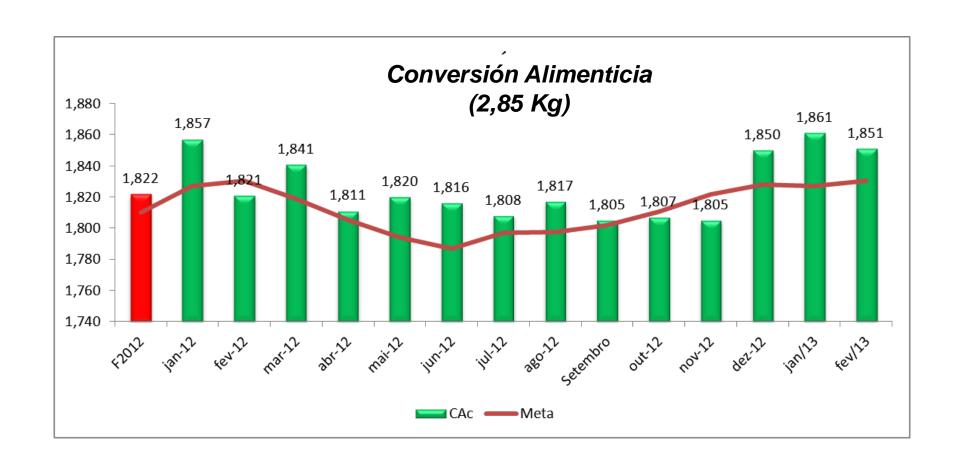


10 Años de Selección Genética


Característica	Unidad	10 A	vños	Dif.
Peso Corporal	kg	2,514	2,514	-
Edad	días	48	38,7	9,3
Energía Consumida	kcal	15.322	13.676	89%
Energía Retenida	kcal	6.398	6.368	99%
Eficiencia Energética	%	41,8	46,6	111%
Mantenimiento	kcal	5.394	4.360	80%
Metabolismo Basal (TMB)	kcal	2.448	2.158	88%
TMB por Hora	kcal	2,125	2,323	109%

Zona de Confort Térmico




Zona de Termoneutralidad T °C = 31,896 – 4,625 x P.V (Kg)

Wilson, 2005

El efecto de la temperatura ambiental sobre el rendimiento del pollo

¡La evolución de los sistemas de construcción!

Potencial Genético - Metabolismo

- Definición de Mantenimiento
 - Una definición práctica de mantenimiento es la cantidad de energía y nutrientes necesarios para mantener a un animal sin ninguna ganancia o pérdida neta de los tejidos del cuerpo
- Componentes del Mantenimiento (Consumo de Energía)
 - Tasa de Metabolismo Basal en Descanso
 - Actividad para Lograr el Sustento
 - Eficiencia Oxidación de los Nutrientes
 - Estrés Retos y Mantenimiento de la Homeostasis Temperatura Ambiente, Respuesta Inmune...

Galpones Oscuros (Dark Houses)

Investigaciones señalan que programas de iluminación pueden rendir desde 90 hasta

150 Kcal ME / Kg

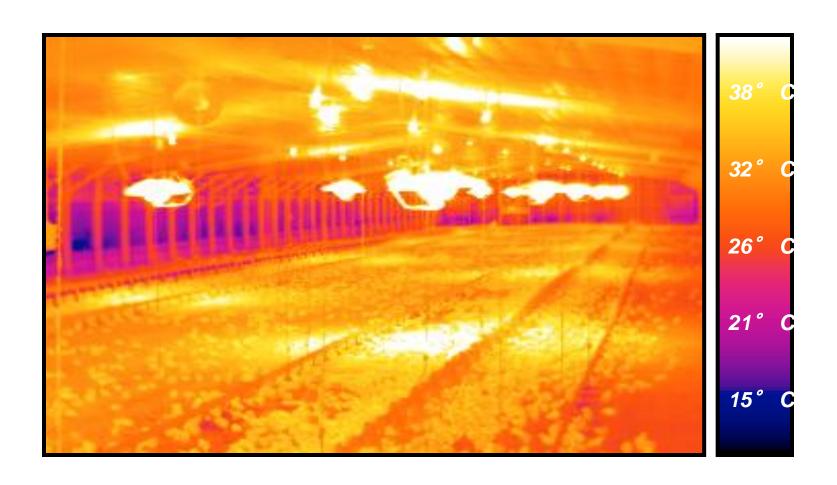
CONFIDENTIAL - Tyson do Brazil - Internal use only

¿Cuál es la expectativa de mejora en el rendimiento?

	Ventilación Convencional	Presión Negativa con Cortina Azul	PresiónNegativa Galpón Oscuro
ADG (g)	Referencia	+ 1,0	+ 1,5
FCR (g/g)	Referencia	- 50	-100
Viabilidad (%)	Referencia	+ 1,0	+ 2,0
Costo (%)	Referencia	- 2,0	- 4,0

Penz, 2013

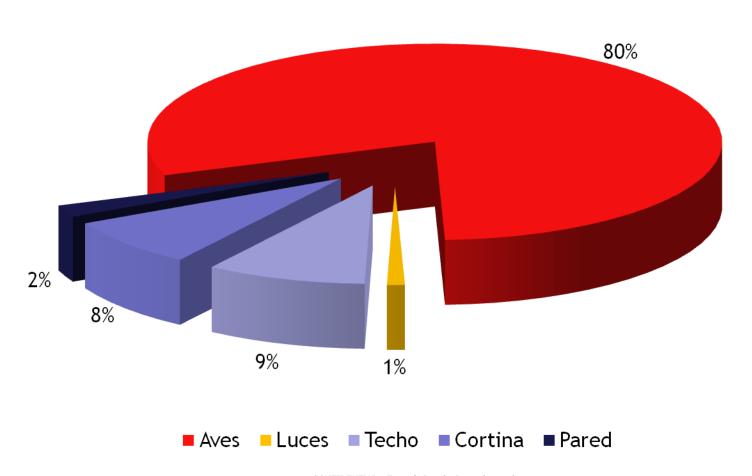
Galpones de Pollo de Engorde



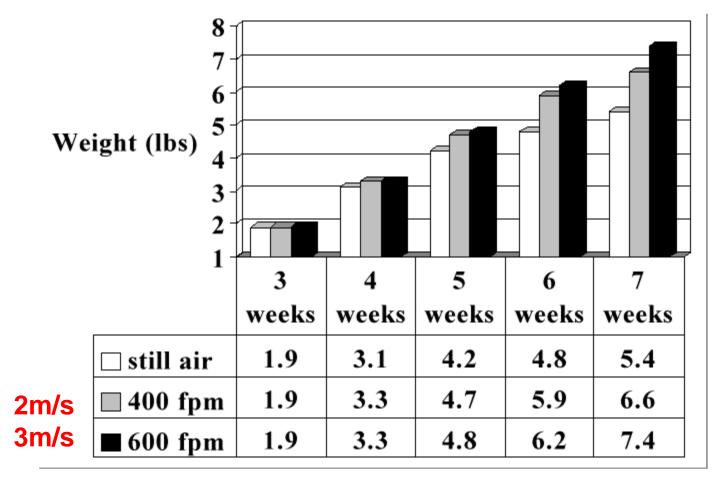
Desempeño de Pollo de Engorde en Diferentes Tipos de Galpón

Tipo de Galpón	CAC _{2,5}	GPD	Mortalidad	IEP	Costo Vivo
Convencional	1,901	56,3	5,08	278	Ref.
Presión Negativa	1,872	57,3	5,17	283	-2%
Dark House	1,825	57,4	5,19	291	-5%

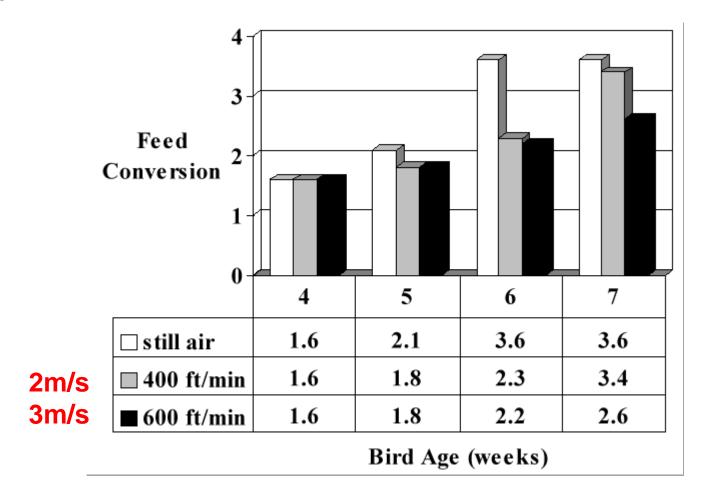
Temperatura y Desempeño


Temperatura de Recepción y Desempeño (42 días)

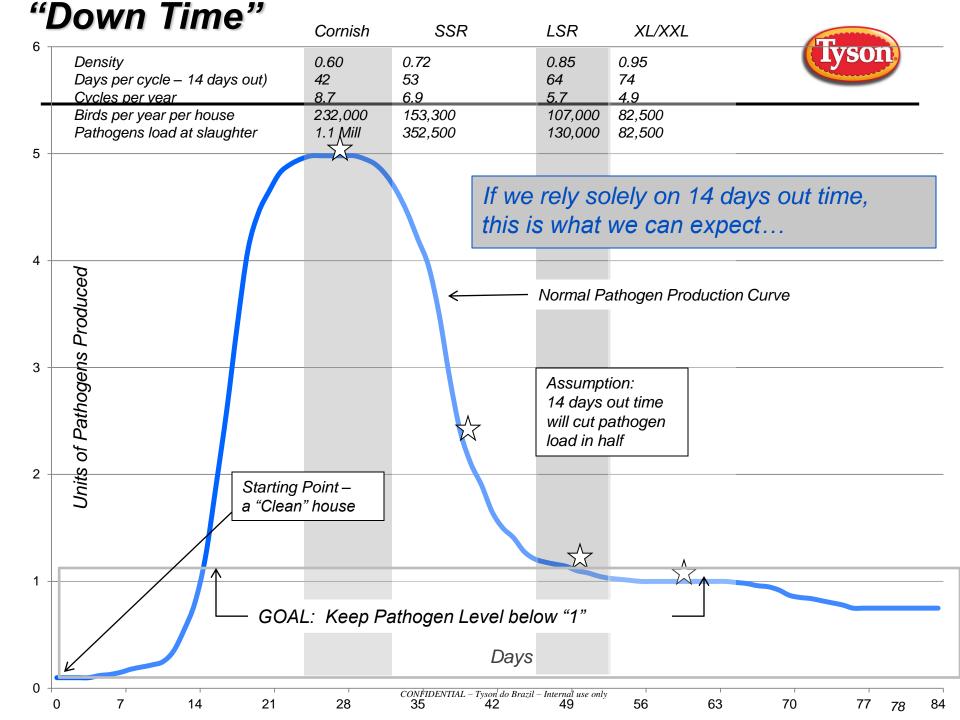
0 - 7 días		42 días	
Temperatura (°C)	Peso (g)	CA	Mortalidad (%)
29,4 - 32,2	2267	1.71	2.08
23,9 - 26,7	2219	1.77	4.17
21,1 - 23,9	2149	1.82	7.08


Temperatura y Desempeño

Fuentes de Calor en Verano



Beneficios en ganancia de peso con más ventilación (investigación USDA, temperatura controlada a 30C)



Credit: Barry Lott, USDA Poultry Research, Starkville MS

Beneficios de la Conversión alimenticia con más ventilación (investigación USDA, temperatura controlada a 30C)



Credit: Barry Lott, USDA Poultry Research, Starkville MS

"Down Time"

- •Assuming a 14 day "half life" of pathogen load, the longer the out time, the lower the load
- •14 days out time, alone, is not enough for small birds
- •Cons may not be cost effective, achievable or sustainable

Daily Maintenance Energy Expenditure Of Coccidiosis Free (Group 0), Subclinical Lesion (Group 1) And Clinically Infected (Group 2)

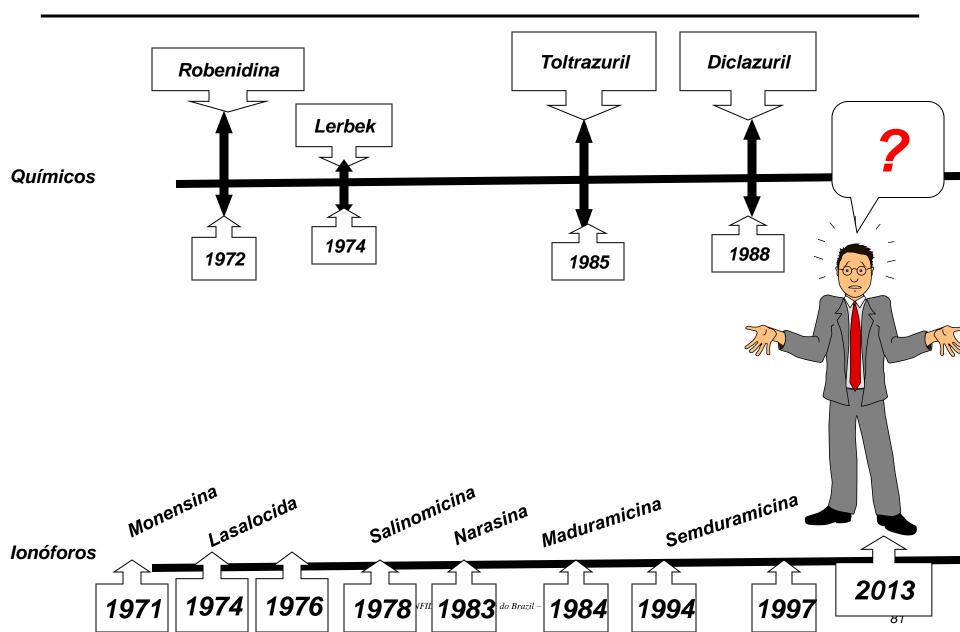
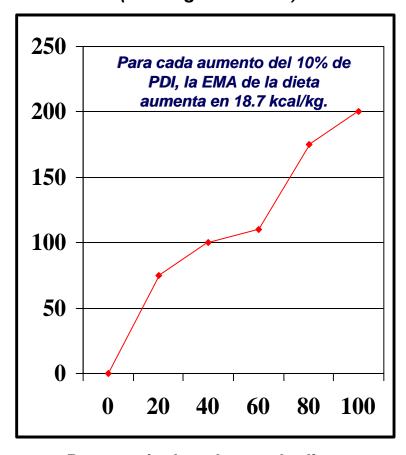


Figura 17. E. maxima +4

	Group 0			Group 1			Group 2								
Kcal / Day	81	121	160	192	231	76	120	177	204	277	88	141	195	235	300
Days	20	27	34	41	48	20	27	34	41	48	20	27	34	41	48

Evolución de agentes anticoccidiales

La influencia de la calidad del pellet en la actuación de las aves


En nuestra evaluación para 50 Kcal:

C.A = 0.03 - 0.05

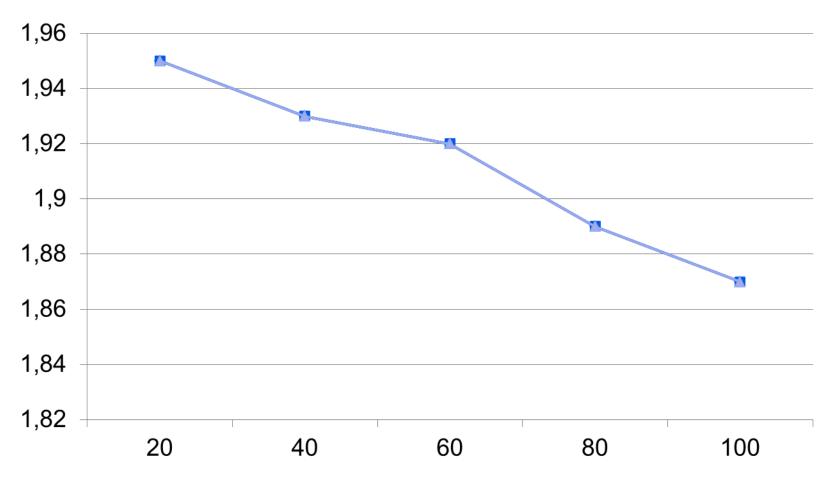
P.V = 35 gramas

Energía ahorrada (Kcal/Kg de la dieta)

Mckinney e Teeter, OSU (2003)

Porcentaje de pelete en la dieta

Peletización y Desempeño



Efecto de Utilización de Grasa y Calidad de Pellet en las Dietas

Grasa	EM	Pellet	Pellet	Dieta
(%)	(kcal/kg)	(%)	(kcal/kg)	(kcal/kg)
0	2977	90	183	3160
1	3014	82	173	3187
2	3049	78	165	3214
3	3084	71	149	3233
4	3120	68	140	3260
5	3157	49	103	3260

Efectos de la calidad del pellet en el índice de conversión alimenticia

Calidad del Pellet

Forma física y energía vs conversión alimenticia (g/g) de pollos (21- 42 días de edad)

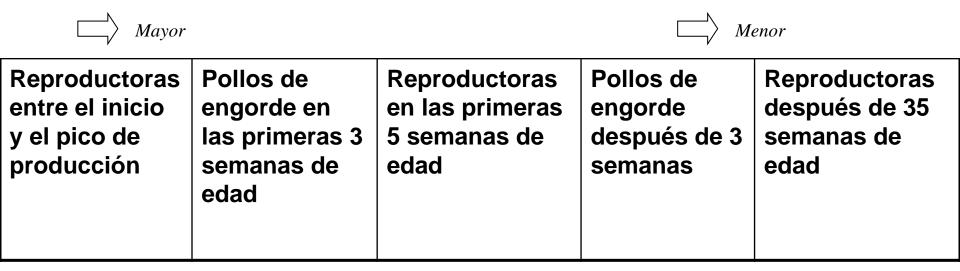
AME (kcal/kg)	Peleted	Mash
2,800	2.08	2.17
2,900	2.00	2.13
3,000	1.92	2.04
3,100	1.89	1.96
3,200	1.82	1.92
Average	1.92b	2.04a

Peletización de los Alimentos

 Ganacias del 3 hasta el 5% en la Conversión Alimenticia y el GPD

Costo de la peletizaciónU\$ / Ton. = 3,5

Maíz


¡Factores para la mejora de la Conversión Alimenticia y Costos!

Control de Micotoxinas:

"El control de la materia prima en la entrada de la industria de balanceado, almacenaje, segregación de los mejores granos para alimentos iniciadores ¡y la utilización de adsorventes de micotoxinas!"

Cuadro de la Susceptibilidad de la Materia Prima Deficiente, de Mayor a Menor.

"LAS REPRODUCTORAS SON MUCHO MÁS SUSCEPTIBLES A ALIMENTO CONTAMINADO CON MICOTOXINAS ENTRE EL INICIO Y EL PICO DE PRODUCCIÓN."

"EL 80% DE LOS PROBLEMAS DE HOY ESTÁN CAUSADOS POR LA BAJA CALIDAD DE LA MATERIA PRIMA."

Fuente: Bakker – 1998.

DISTINTOS PERÍODOS DE DESARROLLO DE AVES X INTOXICACIÓN CON AFLATOXINA

		Peso Corporal							
Trat	Aflatox	Período de Intoxicación	7	21	35	42	GMD (g)		
1	0		0,163 ab	0,831 a	1,930 a	2,390 a	56,9 a		
2	5	1-7 d	0,159 b	0,710b	1,744 b	2,228 b	53,0 b		
3	5	1-21 d	0,159 b	0,550 с	1,439 c	1,943 c	46,3 c		
4	5	21-35 d	0,163 ab	0,843 a	1,914 a	2,369 a	56,4 a		
5	5	21-42 d	0,173 a	0,821 a	1,939 a	2,323 a	55,3 a		
6	5	35-42 d	0,168 ab	0,828 a	1,964 a	2,396 a	57,0 a		
7	5	1-42 d	0,155 b	0,564 c	1,379 с	1,765 d	42,0 d		

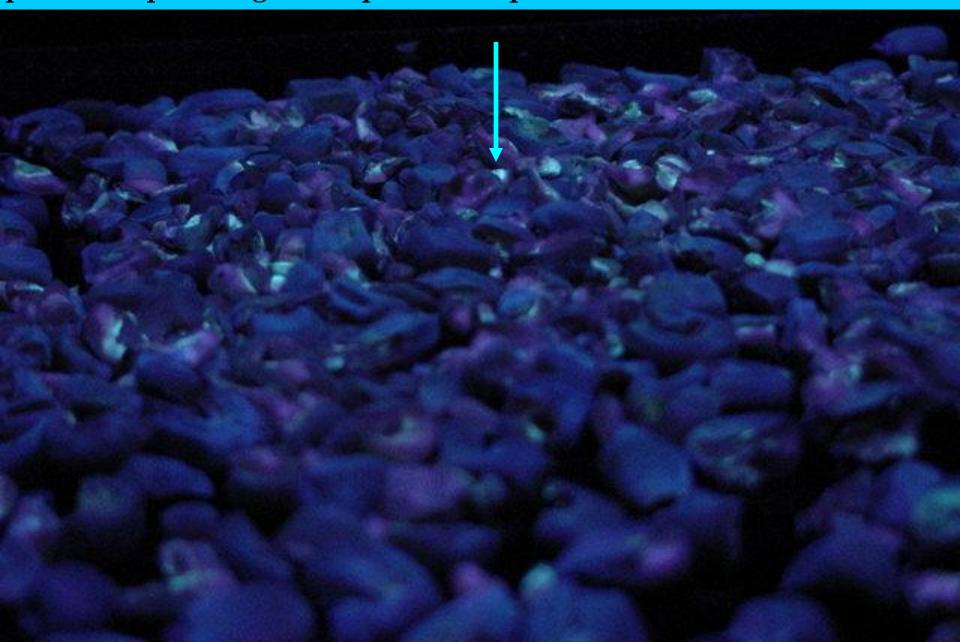
Maíz y Desempeño

Calidades de Maíz y Desempeño de Pollos de Engorde en los 42 Días

Densidad		Aflatoxina	Peso	CA
Alta	4022 / 7,61	0 (ppm)	2367	1,66
Alta	4022 / 7,61	2,8 (ppm)	1650	1,81
Baja	3911 / 7,45	0 (ppm)	2278	1,67
Baja	3911 / 7,45	2,8 (ppm)	1514	1,87

Control de Micotoxinas

¡Control de la materia prima en la entrada de la industria de balanceado!



Diagnóstico Rápido de Aflatoxinas


Ácido Ciclopiazónico = Metabólico refringente a la luz ultravioleta, producido por hongo en el proceso de producción de micotoxinas

Abajo presento en Cromatografía Líquida (HPLC) Aflatoxinas, ppb

B1 = 270 G1 = 5,4

B2 = 16,3 G2 = ND

Soya

Soya y Desempeño

Harinas de Soya y Desempeño de Pollos de Engorde en los 21 Días

Nivel Proteína	Consumo	Peso	CA
44%	1.101	788	1,476
46%	1.104	804	1,462
48%	1.135	838	1,430

Recomendación Nutricional y Desempeño

Nutriente	Unidad	0 a 10	11 a 22	23 a 42	42
Proteína	%	21	19	18	17
Energía	kcal/kg	2988	3083	3176	3176
Lisina	%	1.20	1.10	1.05	1.00
Met + Cis	%	0.89	0.84	0.82	0.78
Triptófano	%	0.20	0.19	0.19	0.18
Treonina	%	0.79	0.74	0.72	0.69
Arginina	%	1.26	1.17	1.13	1.08
Calcio	%	1.00	0.96	0.90	0.85
Fósforo	%	0.50	0.48	0.45	0.42

20 kcal = 0,01 CA

2% AA = 0.01 CA

Muchas Gracias